Influence Of Cold Stress on Abscisic Acid Production in Plants
Keywords:
ABA discovery, ABA synthesis, Cold stress, Role of ABA, Transport of ABAAbstract
The mode of action of Abscisic acid (ABA) and its connections to adapt cold stress in particular have captured the attention of plant hormone researchers for more than a decade. Abiotic stresses are the main risk to agriculture productivity which is needed to feed the growing population of the world in coming decades. Being a significant phytohormone, ABA is crucial in responding to a variety of challenges, including high and low temperatures, drought, thermal or heat stress, heavy metal and radiation stress. Stress situations cause plants to slow down their growth and development, which ultimately has an impact on the output. There is a lot of proof that ABA moves around inside plants. In reaction to dry soil conditions, ABA has been proposed as a root-derived signaling chemical that causes stomatal closures. Additionally, it has been claimed that ABA produced in vegetative tissues is transferred to seeds. Because it has a large impact on the endogenous hormone concentration at the site of action, ABA transport is a key mechanism in physiological responses. Additionally, ABA is a significant messenger that functions as a signaling mediator to control how plants respond adaptively to various environmental stresses. Additionally, a variety of developmental stages are explained in depth, including stomata closure, seed dormancy, and seed germination. Endogenous ABA levels are increased in many plants as a result of cold stress. The function of ABA at low temperatures will be discussed in this review. ABA transportation in plants, ABA biosynthesis in plants, the pathway from IPP to ABA production, the use of ABA in plants, and the site of ABA biosynthesis are all discussed in current review.
References
1. Agrawal, G. K., Yamazaki, M., Kobayashi, M., Hirochika, R., Miyao, A., & Hirochika, H. (2001). Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant physiology, 125(3), 1248-1257.
2. Ali, F., Qanmber, G., Li, F., & Wang, Z. (2022). Updated role of ABA in seed maturation, dormancy, and germination. Journal of Advanced Research, 35, 199-214.
3. Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Peirats-Llobet, M., Pizzio, G. A., Fernandez, M. A.. Bennett, M. J. (2013). PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant physiology, 161(2), 931-941.
4. Awan, S. Z., Chandler, J. O., Harrison, P. J., Sergeant, M. J., Bugg, T. D., & Thompson, A. J. (2017). Promotion of germination using hydroxamic acid inhibitors of 9-cis-epoxycarotenoid dioxygenase. Frontiers in plant science, 8, 357.
5. Benderradji, L., Saibi, W., & Brini, F. (2021). Role of ABA in overcoming environmental stress: sensing, signaling and crosstalk. Annu. Agric. Crop Sci, 6, 1070.
6. Bhatla, S. C., A. Lal, M., & Kalra, G. (2018). Abscisic Acid. Plant Physiology, Development and Metabolism, 629-641.
7. Borowitzka, M. A. (1976). Some unusual features of the ultrastructure of the chloroplasts of the green algal order Caulerpales and their development. Protoplasma, 89, 129-147.
8. Brady, S. M., Sarkar, S. F., Bonetta, D., & McCourt, P. (2003). The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. The Plant Journal, 34(1), 67-75.
9. Brandt, B., Brodsky, D. E., Xue, S., Negi, J., Iba, K., Kangasjärvi, J., . . . Schroeder, J. I. (2012). Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proceedings of the National Academy of Sciences, 109(26), 10593-10598.
10. Bürger, M., & Chory, J. (2019). Stressed out about hormones: how plants orchestrate immunity. Cell host & microbe, 26(2), 163-172.
11. Capelle, V., Remoué, C., Moreau, L., Reyss, A., Mahé, A., Massonneau, A., . . . Rogowsky, P. (2010). QTLs and candidate genes for desiccation and abscisic acid content in maize kernels. BMC Plant Biology, 10(1), 1-22.
12. Chen, K., Li, G. J., Bressan, R. A., Song, C. P., Zhu, J. K., & Zhao, Y. (2020). Abscisic acid dynamics, signaling, and functions in plants. Journal of integrative plant biology, 62(1), 25-54.
13. Chen, L. J., Xiang, H. Z., Miao, Y., Zhang, L., Guo, Z. F., Zhao, X. H., . . . Li, T. L. (2014). An overview of cold resistance in plants. Journal of Agronomy and Crop Science, 200(4), 237-245.
14. Cheng, W.-H., Endo, A., Zhou, L., Penney, J., Chen, H.-C., Arroyo, A., . . . Seo, M. (2002). A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. The plant cell, 14(11), 2723-2743.
15. Chinnusamy, V., Schumaker, K., & Zhu, J. K. (2004). Molecular genetic perspectives on cross‐talk and specificity in abiotic stress signalling in plants. Journal of experimental botany, 55(395), 225-236.
16. Chloroplast, C. Different forms of plastids. Plant Cells and their Organelles, 240.
17. Choi, H.-i., Hong, J.-h., Ha, J.-o., Kang, J.-y., & Kim, S. Y. (2000). ABFs, a family of ABA-responsive element binding factors. Journal of Biological Chemistry, 275(3), 1723-1730.
18. Cowan, A. K., & Richardson, G. R. (1993). The biosynthesis of abscisic acid from all-trans-β-carotene in a cell-free system from Citrus sinensis exocarp. Plant and cell physiology, 34(6), 969-972.
19. Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic acid: emergence of a core signaling network. Annual review of plant biology, 61, 651-679.
20. Daeter, W., & Hartung, W. (1993). The permeability of the epidermal cell plasma membrane of barley leaves to abscisic acid. Planta, 191, 41-47.
21. Daszkowska-Golec, A., Wojnar, W., Rosikiewicz, M., Szarejko, I., Maluszynski, M., Szweykowska Kulinska, Z., & Jarmolowski, A. (2013). Arabidopsis suppressor mutant of abh1 shows a new face of the already known players: ABH1 (CBP80) and ABI4—in response to ABA and abiotic stresses during seed germination. Plant molecular biology, 81, 189-209.
22. Davis, L. A., & Addicott, F. T. (1972). Abscisic acid: correlations with abscission and with development in the cotton fruit. Plant physiology, 49(4), 644-648.
23. DeJong-Hughes, J., Moncrief, J. F., Voorhees, W., & Swan, J. (2001). Soil compaction: causes, effects and control: St. Paul, MN: University of Minnesota Extension Service.
24. Dejonghe, W., Okamoto, M., & Cutler, S. R. (2018). Small molecule probes of ABA biosynthesis and signaling. Plant and cell physiology, 59(8), 1490-1499.
25. Deng, X., Qiao, D., Li, L., Yu, X., Zhang, N., Lei, G., & Cao, Y. (2005). The effect of chilling stress on physiological characters of medicago sativa. J Sichuan Univ (Natural Science Edition), 42(1), 190-194.
26. Ding, Y., Avramova, Z., & Fromm, M. (2011). The Arabidopsis trithorax‐like factor ATX1 functions in dehydration stress responses via ABA‐dependent and ABA‐independent pathways. The Plant Journal, 66(5), 735-744.
27. Dobrev, P. I., & Vankova, R. (2012). Quantification of abscisic acid, cytokinin, and auxin content in salt stressed plant tissues. Plant salt tolerance: methods and protocols, 251-261. 28. Dong, T., Park, Y., & Hwang, I. (2015). Abscisic acid: biosynthesis, inactivation, homoeostasis and signalling. Essays in biochemistry, 58, 29-48.
29. Donno, D., Beccaro, G. L., Cerutti, A., Mellano, M. G., & Bounous, G. (2015). Bud Extracts as New Phytochemical Source for Herbal Preparations—Quality Control and Standardization by Analytical Fingerprint. Phytochemicals—Isolation, Characterisation and Role in Human Health, 1st ed.; Rao, AV, Rao, LG, Eds, 187-218.
30. Duan, L., Dietrich, D., Ng, C. H., Chan, P. M. Y., Bhalerao, R., Bennett, M. J., & Dinneny, J. R. (2013). Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. The plant cell, 25(1), 324-341.
31. Duckham, S., Linforth, R., & Taylor, I. (1991). Abscisic‐acid‐deficient mutants at the aba gene locus of Arabidopsis thaliana are impaired in the epoxidation of zeaxanthin. Plant, cell & environment, 14(6), 601 606.
32. Ellis, M. H., Dennis, E. S., & James Peacock, W. (1999). Arabidopsis roots and shoots have different mechanisms for hypoxic stress tolerance. Plant physiology, 119(1), 57-64.
33. Ensminger, I., Busch, F., & Huner, N. P. (2006). Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiologia Plantarum, 126(1), 28-44.
34. Fan, J., Ren, J., Zhu, W., Amombo, E., Fu, J., & Chen, L. (2014). Antioxidant responses and gene expression in bermudagrass under cold stress. Journal of the American Society for Horticultural Science, 139(6), 699-705.
35. Feng, C. Z., Chen, Y., Wang, C., Kong, Y. H., Wu, W. H., & Chen, Y. F. (2014). Arabidopsis RAV 1 transcription factor, phosphorylated by S n RK 2 kinases, regulates the expression of ABI 3, ABI 4, and ABI 5 during seed germination and early seedling development. The Plant Journal, 80(4), 654-668.
36. Feng, J., Liu, R., Chen, P., Yuan, S., Zhao, D., Zhang, J., & Zheng, Z. (2015). Degradation of aqueous 3, 4-dichloroaniline by a novel dielectric barrier discharge plasma reactor. Environmental Science and Pollution Research, 22, 4447-4459.
37. Finkelstein, R. (2013). Abscisic acid synthesis and response. The Arabidopsis book/American society of plant biologists, 11.
38. Finkelsteina, R. R., & Rockb, C. D. (2002). Abscisic acid biosynthesis and response. The Arabidopsis Book; American Society of Plant Biologists.
39. Fu, J., Wu, Y., Miao, Y., Xu, Y., Zhao, E., Wang, J., . . . Xu, Y. (2017). Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA independent pathways. Scientific reports, 7(1), 39865.
40. Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.-Y., . . . Zhu, J.-K. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature, 462(7273), 660-664.
41. Fujita, Y., Fujita, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2011). ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of plant research, 124, 509-525.
42. Gao, S.-Q., Chen, M., Xu, Z.-S., Zhao, C.-P., Li, L., Xu, H.-j., . . . Ma, Y.-Z. (2011). The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant molecular biology, 75, 537-553.
43. González-Guzmán, M., Apostolova, N., Bellés, J. M., Barrero, J. M., Piqueras, P., Ponce, M. R., . . . Rodríguez, P. L. (2002). The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. The plant cell, 14(8), 1833-1846.
44. Gu, X.-Y., Liu, T., Feng, J., Suttle, J. C., & Gibbons, J. (2010). The qSD12 underlying gene promotes abscisic acid accumulation in early developing seeds to induce primary dormancy in rice. Plant molecular biology, 73, 97-104.
45. Gull, A., Lone, A. A., & Wani, N. U. I. (2019). Biotic and abiotic stresses in plants. Abiotic and biotic stress in plants, 1-19.
46. Gusta, L., Trischuk, R., & Weiser, C. (2005). Plant cold acclimation: the role of abscisic acid. Journal of Plant Growth Regulation, 24, 308-318.
47. Hartung, W., Sauter, A., & Hose, E. (2002). Abscisic acid in the xylem: where does it come from, where does it go to? Journal of experimental botany, 53(366), 27-32.
48. He, H., Xue, L., Tian, L., & Chen, Y. (2008). Effect of low temperature stress on the chlorophyll contents and chlorophyll fluorescence parameters in muskmelon seedling leaves. Northern Hort, 4, 121-127.
49. Heidarvand, L., & Maali Amiri, R. (2010). What happens in plant molecular responses to cold stress? Acta Physiologiae Plantarum, 32, 419-431.
50. Hirai, N. (2018). Abscisic acid Chemistry of plant hormones (pp. 201-248): Routledge.
51. Hoad, G. (1995). Transport of hormones in the phloem of higher plants. Plant Growth Regulation, 16, 173-182.
52. Howitt, C. A., & Pogson, B. J. (2006). Carotenoid accumulation and function in seeds and non‐green tissues. Plant, cell & environment, 29(3), 435-445.
53. Hsu, F.-C., Chou, M.-Y., Peng, H.-P., Chou, S.-J., & Shih, M.-C. (2011). Insights into hypoxic systemic responses based on analyses of transcriptional regulation in Arabidopsis. PLoS One, 6(12), e28888.
54. Huang, B., Fan, Y., Cui, L., Li, C., & Guo, C. (2022). Cold stress response mechanisms in anther development. International Journal of Molecular Sciences, 24(1), 30.
55. Huang, X., Chen, M.-H., Yang, L.-T., Li, Y.-R., & Wu, J.-M. (2015). Effects of exogenous abscisic acid on cell membrane and endogenous hormone contents in leaves of sugarcane seedlings under cold stress. Sugar Tech, 17, 59-64.
56. Huang, Y., Feng, C.-Z., Ye, Q., Wu, W.-H., & Chen, Y.-F. (2016). Arabidopsis WRKY6 transcription factor acts as a positive regulator of abscisic acid signaling during seed germination and early seedling development. PLoS Genetics, 12(2), e1005833.
57. Hubbard, K. E., Nishimura, N., Hitomi, K., Getzoff, E. D., & Schroeder, J. I. (2010). Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes & development, 24(16), 1695-1708.
58. Ikegami, K., Okamoto, M., Seo, M., & Koshiba, T. (2009). Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit. Journal of plant research, 122, 235-243.
59. Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., . . . Shinozaki, K. (2001). Regulation of drought tolerance by gene manipulation of 9‐cis‐epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. The Plant Journal, 27(4), 325-333.
60. Jarvis, P., & López-Juez, E. (2013). Biogenesis and homeostasis of chloroplasts and other plastids. Nature Reviews Molecular Cell Biology, 14(12), 787-802.
61. Jia, K.-P., Mi, J., Ali, S., Ohyanagi, H., Moreno, J. C., Ablazov, A., . . . Diretto, G. (2022). An alternative, zeaxanthin epoxidase-independent abscisic acid biosynthetic pathway in plants. Molecular Plant, 15(1), 151-166.
62. Jiang, F., & Hartung, W. (2008). Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. Journal of experimental botany, 59(1), 37-43.
63. Kim, Y.-H., Choi, K.-I., Khan, A. L., Waqas, M., & Lee, I.-J. (2016). Exogenous application of abscisic acid regulates endogenous gibberellins homeostasis and enhances resistance of oriental melon (Cucumis melo var. L.) against low temperature. Scientia Horticulturae, 207, 41-47.
64. Kishor, P. B. K., Tiozon, R. N., Fernie, A. R., & Sreenivasulu, N. (2022). Abscisic acid and its role in the modulation of plant growth, development, and yield stability. Trends in Plant Science.
65. Krouk, G., Ruffel, S., Gutiérrez, R. A., Gojon, A., Crawford, N. M., Coruzzi, G. M., & Lacombe, B. (2011). A framework integrating plant growth with hormones and nutrients. Trends in Plant Science, 16(4), 178-182.
66. Ku, Y.-S., Sintaha, M., Cheung, M.-Y., & Lam, H.-M. (2018). Plant hormone signaling crosstalks between biotic and abiotic stress responses. International Journal of Molecular Sciences, 19(10), 3206.
67. Kumar, A., & Verma, J. P. (2018). Does plant—microbe interaction confer stress tolerance in plants: a review? Microbiological research, 207, 41-52.
68. Kumar, S., Kaur, G., & Nayyar, H. (2008). Exogenous application of abscisic acid improves cold tolerance in chickpea (Cicer arietinum L.). Journal of Agronomy and Crop Science, 194(6), 449-456.
69. Kuromori, T., Seo, M., & Shinozaki, K. (2018). ABA transport and plant water stress responses. Trends in Plant Science, 23(6), 513-522.
70. Le Page-Degivry, M.-T., Barthe, P., & Garello, G. (1990). Involvement of endogenous abscisic acid in onset and release of Helianthus annuus embryo dormancy. Plant physiology, 92(4), 1164-1168.
71. Lee, S. C., & Luan, S. (2012). ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant, cell & environment, 35(1), 53-60.
72. Li, L., & Yuan, H. (2013). Chromoplast biogenesis and carotenoid accumulation. Archives of biochemistry and biophysics, 539(2), 102-109.
73. Li, X., Tan, D. X., Jiang, D., & Liu, F. (2016). Melatonin enhances cold tolerance in drought‐primed wild type and abscisic acid‐deficient mutant barley. Journal of Pineal Research, 61(3), 328-339.
74. Lievens, L., Pollier, J., Goossens, A., Beyaert, R., & Staal, J. (2017). Abscisic acid as pathogen effector and immune regulator. Frontiers in plant science, 8, 587.
75. Liu, H., Song, S., Zhang, H., Li, Y., Niu, L., Zhang, J., & Wang, W. (2022). Signaling transduction of ABA, ROS, and Ca2+ in plant stomatal closure in response to drought. International Journal of Molecular Sciences, 23(23), 14824.
76. Ma, Y., Cao, J., He, J., Chen, Q., Li, X., & Yang, Y. (2018). Molecular mechanism for the regulation of ABA homeostasis during plant development and stress responses. International Journal of Molecular Sciences, 19(11), 3643.
77. Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: an overview. Archives of biochemistry and biophysics, 444(2), 139-158.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Author
This work is licensed under a Creative Commons Attribution 4.0 International License.